

ARTIFICIAL INTELLIGENCE PROFESSIONAL CERTIFICATE

CAIPC® Version 062021

Artificial Intelligence Professional Certificate CAIPC®

Syllabus V062021

Introduction	3
Learning Objectives	3
Exam Format and Duration	3
Eligibility for Certification	4
Content	4

Introduction

In 1959, Arthur Samuel, a computer scientist who pioneered the study of artificial intelligence, described machine learning as "the study that gives computers the ability to learn without being explicitly programmed." Alan Turing's seminal paper (Turing, 1950) introduced a benchmark standard for demonstrating machine intelligence, such that a machine has to be intelligent and responsive in a manner that cannot be differentiated from that of a human being.

Machine Learning is an application of artificial intelligence where a computer/machine learns from the past experiences (input data) and makes future predictions. The performance of such a system should be at least at human level.

This certification focuses on clustering problems for unsupervised machine learning with K-Means algorithm. For Supervised machine learning we will describe the classification problem with a demonstration of design trees algorithm and the regression one with an example of linear regression.

Learning Objectives

- Understand the fundamentals of artificial Intelligence and machine learning
- Describe the methods of machine learning: supervised and unsupervised
- Use the data analysis for decision-Making
- Understand the limits of algorithms
- Understand and grasp Python programming, essential mathematics knowledge in AI, basic programming methods

Exam Format and Duration

This study program has an exam in which the candidate must achieve a score to obtain the certification in Artificial Intelligence Professional Certificate CAIPC®

- Format: Multiple choice
- Questions: 40
- Language: English, spanish and portuguese
- Pass Score: 32/40 or 80%
- Duration: 60 minutes
- Open book: No
- Delivery: This examination is available Online
- Supervised: it will be at the discretion of the Partner

Eligibility for Certification

- Anyone interested in expanding their knowledge in artificial intelligence and Machine
- Engineers, analysts, marketing managers
- Data Analysts, Data Scientists, Data Stewards
- Anyone interested in Data Mining and Machine Learning techniques

Content

Machine Learning Fundamentals

Machine Learning Fundamentals

I.1 Key Points

Supervised Machine Learning

Unsupervised Machine Learning

Reinforcement Machine Learning

I.2 Introduction to K-Nearest Neighbors

Introduction

Introduction to the Data

K-nearest Neighbors

Euclidean Distance

Calculate Distance for All Observations

Randomizing and Sorting

Average Price

Functions for Prediction

I.3 Evaluating Model Performance

Testing Quality of Predictions

Error Metrics

Mean Squared Error

Training Another Model

Root Mean Squared Error

Comparing MAE and RMSE

I.4 Multivariate K-Nearest Neighbors

Recap

Removing Features

Handling Missing Values

Normalize Columns

Euclidean Distance for Multivariate Case

Introduction to Scikit-learn

Fitting a Model and Making Predictions

Calculating MSE using Scikit-Learn

Using More Features

Using All Features

I.5 Hyperparameter Optimization

Recap

Hyperparameter Optimization

Expanding Grid Search

Visualizing Hyperparameter Values

I.6 Cross Validation

Concept

Holdout Validation

K-Fold Cross Validation

I.7 Guided Project: Predicting Car Prices

Guided Project: Predicting Car Prices

II Calculus For Machine Learning

Calculus For Machine Learning

Understanding Linear and Nonlinear Functions

Understanding Limits

Finding Extreme Points

III Linear Algebra For Machine Learning

Linear Algebra For Machine Learning

Linear Systems

Vectors

Matrix Algebra

Solution Sets

IV Linear Regression For Machine Learning

Linear Regression For Machine Learning

The Linear Regression Model

Feature Selection

Gradient Descent

Ordinary Least Squares

Processing And Transforming Features

Guided Project: Predicting House Sale Prices

V Machine Learning in Python

Logistic Regression

Introduction to Evaluating Binary Classifiers

Multiclass Classification

Overfitting

Clustering Basics

K-means Clustering

Guided Project: Predicting the Stock Market

VI Decision Tree

Decision Tree

Why use Decision Trees?

Decision Tree Terminologies

How Does the Decision Tree Algorithm Work

Pruning: Getting an Optimal Decision Tree

Advantages of the Decision Tree

Disadvantages of the Decision Tree

Python Implementation of Decision Tree

Guided Project: Predicting Bike Rentals

References and Bibliography